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Summary. The two-particle approach to the covalent and ionic valence indices is 
presented within the restricted and unrestricted Har t r ee -Fock  theories ( R H F  
and UHF).  It is based on the analysis of contributions from the two-particle 
density matrix F in the orthogonal atomic orbital (OAO) representation. The 
atomic and diatomic valence indices are identified with respect to the reference 
states of  separated atoms or ions and their physical interpretation is given. It is 
found that ionic indices originate from the Coulomb part of  F, while the 
covalent indices are related to its exchange part. They are shown to be related to 
the differences, with respect to the reference state values, of the condensed 
F-matrix elements, measuring a total probability of  simultaneously finding two 
electrons on atoms A and B. An interpretation of  a second-order Taylor 
expansion around the reference states of the proposed electron pair valence 
indices is given. Illustrative valence diagrams for the two atomic orbital model 
are presented for both the A + B  and A - + B  + reference limits, and their 
implications for the bond description are briefly discussed. The valence indices 
for simple diatomics and polyatomics are generated within the RHF and U H F  
schemes. The problem of the residual valence in the RHF approach is examined 
and the RHF predictions for alternative reference states are compared. 
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1. Introduction 

The concept of valence has been advanced by chemists to quantify in an intuitive 
way the covalent bonding between atoms in molecules, as opposed to the ionic 
bonding, for which a separate bond characterization has been introduced. The 
idea of such a measure of the covalent bond had been originally defined rather 
vaguely and this prompted a continuous effort to formulate a more precise 
definition of a valency in quantum chemistry [ 1, 2]. The most successful of such 
definitions have been developed in terms of  the first-order density matrix of a 
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molecule [3-9], giving generally fractional values close to the intuitive chemical 
valence numbers in standard covalent bond systems [6]. They have been shown 
to be capable of characterizing a wide range of bonding situations which are 
encountered in both molecular structures and chemical reactions. Their frac- 
tional character often results from the presence of the ionic bond component, 
with the interatomic charge transfer usually diminishing (increasing) a capability 
of the net electron donating (accepting) atoms to form the covalent bonds with 
other atoms. However, a full description of this interplay of the ionic and 
covalent components in the chemical bond has been hampered by a lack of 
reliable ionic valence indices, defined within the same theoretical framework as 
the covalent valence numbers. The present work represents an attempt to fill this 
gap in the theory of valence, offering a consistent set of covalent and ionic bond 
indices (atomic and diatomic) formulated within the same theoretical basis 
provided by the normalization of the two-particle density matrix. 

There are conflicting intuitions behind the bond ionicity in chemistry. On one 
hand, the ionic bond is usually associated with the nonsymmetrical distribution 
of the electron density difference which characterizes the charge redistribution 
accompanying the bond formation. An ionic bond index on this basis was 
proposed by Evarestov and Veryazov [10]. One could call such an approach to 
the bond ionicity the one-electron perspective. On the other hand, when ap- 
proaching the subject from the two-electron perspective, a measure of the bond 
ionicity is provided by relative contributions from the ionic and covalent 
structures of the overall wavefunction of a molecule, reflecting upon the proba- 
bilities of finding two electrons simultaneously on specified atoms. Using the 
latter perspective one would conclude, therefore, that there is an inherent ionicity 
even in the symmetric bond, e.g., in H2. The present treatment is based upon 
such an approach to the bond ionicity, which immediately points towards the 
two-particle density matrix F, as the convenient theoretical background for 
extracting the relevant electron pair valence numbers. The two-particle density 
matrix based on nonorthogonal AO's has already been used to define chemical 
valence in terms of correlations between the fluctuations of the atomic charges 
around the average populations of atoms in a molecule [9, 11]. The regional 
fluctuations in the number of electrons (or in electron density) are related to the 
regional softness parameters [11, 12]. 

We would also like to remark at this point that valence is a difference 
phenomenon, measuring changes in the electron "pairings" in a molecule relative 
to those in the separated atoms/ions limit (SAL). Only with such a reference the 
amount of charge transfer, a measure of the atom polarization and the covalent 
valence index are defined. In the present approach we adopt therefore a similar 
SAL reference state to define the relevant electron pair valence numbers counting 
electronic pairs, rather than electrons. Specification of the reference states will be 
given in a later section. In our approach all main valence components and the 
competition between them appear naturally, so that such effects as, e.g. the 
saturation of specific valence components, effect of one component upon an- 
other, role of lone electronic pairs (covalent-inactive, but ionic-active), can be 
discussed on the same theoretical basis. 

One of our guiding principles will be to preserve in the theoretical develop- 
ment the essence of the definition of the covalent valence by Gopinathan and Jug 
[6], given by the sum of squares of the density matrix elements corresponding to 
pairs of orbitals centered on different atoms, be it in a novel framework. This 
diagonal quadratic form clearly indicates a two-electron (electron pairing) char- 
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acter of this quantity, conceptually close to the classical Lewis viewpoint of 
covalent bonds as shared electron pairs. It should be emphasized that it is not 
generally possible to directly associate with the valence indices also energetical 
effects. Rather, this concept should be treated as a description of the electron 
pairing situation change in a molecule, relative to the SAL, providing a supple- 
mentary information to energetical considerations. This general attitude has been 
adopted in the present work: The reported numbers reflect upon changes in 
two-electron probabilities in a molecule, as revealed by a given Hartree-Fock 
(HF) ground state wavefunction. The following formalism of chemical valency in 
terms of changes in finding two electrons on specified atoms is quite general and 
applies also to correlated wavefunctions. Therefore results based on configura- 
tion interaction (CI) could be given at a later time. But the presentation in terms 
of HF theory contains the basic features and does not impose serious restrictions 
on the formalism. It is to be understood that HF theory is a many electron 
theory, despite its usual reduction to molecular orbitals, i.e. one electron 
functions. Also the effect of left-right correlation is implicitly included in the 
separated atom reference states which are not HF limit states. 

The paper is organized in the following way. In the next section the ionic and 
covalent valence indices in the RHF and UHF theories are defined. Their 
physical content and their relation to the differences in the so-called condensed 
(in atomic resolution) F-matrix elements is the subject of Sect. 3. The problem 
of residual valence in the RHF scheme is discussed and the corrections to the 
atomic indices due to a renormalization of the RHF F-matrix in the SAL are 
proposed. The two-orbital model valency diagrams are the subject of Sect. 4. 
Finally, the illustrative valence indices for selected diatomics and polyatomics are 
reported and discussed in Sect. 5, where the effect of alternative choices of the 
reference atomic configurations is examined in some detail. We adopt the usual 
AO representation used in the previous development. 

2 Two-electron valence contributions 

2. l Summary  o f  basis definitions and relations 

Consider the two-particle density matrix [9] in the HF approximation in the 
orthogonalized atomic orbital (OAO) representation. It can .be expressed within 
RHF theory in terms of the familiar charge-and-bond-order or one-particle 
density matrix: 

P = 2CC t 

where C is the LCAO MO matrix in terms of the OAO basis set 2. The UHF 
theory defines separate one-particle density matrices for the occupied MO's 
associated with the ~- and t-spins, respectively: 

P~ = C~C ~t (2a) 

P# = C#C #t (2b) 

giving rise to the total density matrix, P = P~ + P#. In what follows we assume 
that the basis set includes natural hybrid orbitals (NHO's) of the constituent 
atoms/ions which diagonalize the atomic blocks of the relevant density matrices 
in the SAL. This approach was first suggested by McWeeny [13] and more 
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recently adopted by Weinhold and coworkers [14-15] for construction of Lewis 
structures and characterization of lone pairs and multiple bonds. 

The independent-particle approach of the HF theory allows one to factorize 
the elements of the spinless two-particle density matrix (we adopt the L6wdin 
[ 16] normalization): 

F ( r ' l ' r ' 2 ' r " r 2 ) = ( n ) f  * ' ' x ) g t ( r l ' r 2 ' x ) d x 2  7/ ( r l '  r2 ,  

OAO 
= Z r ( m  (3) 

~tvOa 

FRI-IF(I~e I va) 1 = z (2P~ P~  -- P~Po~) (4a) 

I" UHF(#~ I VG) 1 ~: ~. = 5(Pu~P~,~ - P ~ P ~  - P~u~ P ~ ,  ~ (4b) 

where n is the number of electrons. The pair-diagonal elements, 
= 

I ' R H F ( ~ ,  ~)  1 2 ~( 2P..P~Q (5a) = __ P , ~ )  

F UHF(#, ~)  1 c~ 2 = 5[PuuP~ - ( P ~ o )  - ( P . ~ ) 2 1  ( 5 b )  

have the well-known probability interpretation. Namely, they measure in terms 
of the electronic pairs, the probability of simultaneously finding one electron on 
2. and another electron on )~, for the arbitrary distribution of the remaining 
electrons. Using the appropriate idempotency relations: 

p2 = 2P (closed shell) 

(p~)2 = p~, (p~)2 = p~ (open shell) (6) 

one immediately verifies that F = {F(#, 4)] is indeed "normalized" to the number 
of distinct electronic pairs (see Eq. (3)) in a molecule: 

OAO 
F(/~, ~) - Tr F = n(n - 1)/2 (7) 

#,  ~o 

This basic relation can be rewritten in terms of the corresponding condensed 
F-matrix elements: 

A B 

r(A, B) - Z r(a, b) (8) 
a b 

Tr F = Z ~ F(A, B) = n(n --1)/2 - JV (7a) 
A B 

In Eq. (8) a denotes an OAO associated with atom A and b an OAO of atom B, 
respectively. Since F(a, b) is symmetric, F(A, B) is also symmetric. Clearly, the 
respective condensed two electron probabilities: 

1 
~(A I B) - ~ r(A, B)(2 -- lAB) (9) 

of simultaneously finding two electrons, one on atom A and another on atom B, 
for arbitrary distributions of remaining electrons, are then normalized to unity. 

Z ~ ( A I B ) = I  (7b) 
A~< B 
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The closed-shell relations (see Eq. (6)): 

Tr  p 2  = 2 Tr P = 2n 
(10) 

2 P 2 v = 2 q . - q 2  
v # , u  

where q. = P . .  stands for the orbital occupancy, are fundamental for the 
previous covalent valence concepts [3-6]. As defined by Gopinathan and Jug [6] 
the measure of the interatomic covalent bonding extended from an OAO a on A 
to all other atoms is: 

B 

Va= ~ EP]b (11) 
B~A b 

giving rise to the total atomic covalent valency number: 
A 

V A = 2 V a ~  E VAB ( 1 2 )  
a BC-A 

and the overall number of covalent bonds in the system in question: 

M =½E VA : E E (13) 
A A~< B 

In Eqs. (12) and (13) VAB denotes the interatomic valence number of bond valence: 
A B 

VAB = Z E P]b (14) 
a b 

The intraatomic part of Eqs. (10) has been eliminated in the previous develop- 
ment as reflecting upon the atomic "valence states", rather than "bonding". 

The association of the valency concepts with idempotency relations (10) 
attributes to them a misleading one-electron interpretation. Namely, as it follows 
from the first Eq. (10) a partitioning of the squares of the density matrix 
elements (1.h.s.) amounts to a division of the global number of electrons (r.h.s.). 
This "counting of electrons" via different valence numbers is a somewhat 
inappropriate context for the concept usually associated in chemistry with 
electronic pairs shared by the bonding partners. However, as we have observed 
in Eqs. (5), the products of the density matrix elements Y(#, ~) appear naturally 
in the normalization equation (7) of the two-electron density matrix elements 
appearing now with the 1.h.s. representing a partitioning of distinct electronic 
pairs in the system. We next propose the use of Eq. (7) as the vehicle for 
extracting the set of useful electron-pair, intra- and interatomic valence indices, 
characterizing both the covalent and ionic bond components; they represent a 
more detailed "counting of electronic pairs", measuring changes in the electron 
pairing situation in a molecule, relative to the SAL. 

2.2 Valence contributions and their normalization 

To obtain relevant valence numbers, we shall remove from both sides of Eq. (7) 
all the terms, denoted by 0, relating only to the separated atoms. These are 
characterized by the relevant OAO occupations: 

q0={qO) RHF (15) 
qO= [(qO)~, (qO)a] UHF 
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and the associated atomic populations: 

n o = {n ° } 

A 

n ° = ~ q  ° RHF (16) 
# 

A 

nO = ~ [(qO)~ + (qO)~] UHF 
# 

We therefore express the current orbital occupations and atomic populations in 
terms of the relevant reference data of the separated atoms and the correspond- 
ing changes in the global orbital occupations in a molecule: 

q = qO + Aq 

n = n o + A n  ( 1 7 )  

We now insert Eqs. (17) and (5) into Eq. (7) and subtract from both sides the 
corresponding terms which refer solely to the separated atoms. This procedure 
defines the residual electron pair valence N(qO) of the whole system, which can 
be partitioned in the following way: 

~(q0) = • V~ + Z 2 V~4B 
A A <  B 

= Z + vy  o) + E Z + vy ) 
A A <  B 

ion ion coy coy 
~- V i°" "~- V c°v ~ ( V i n t r  a -~- V i n t e r )  ~-  ( V i n t r  a "~- V i n t e r )  ( 1 8 )  

Here V] and V ~  denote total electron pair valence indices which are composed 
of intratomic and interatomic contributions, respectively, from the ionic and 
covalent pairing effects. N(q0) is reference dependent in the RHF scheme: 

A 

=1 E E o o q. (q .  - 2) (19) 
A a 

and vanishes exactly wher~ the SAL has closed-shell character. The correspond- 
ing UHF expression 

A 
o #  o #  U.F(qO) = ½ ~ ~ {(qO)~[(qO)= _ 1] + (qa) [(qa) - 11} = 0 (20) 

A a 

vanishes exactly at the SAL. 
The specific expressions for the ionic and covalent terms of Eq. (18) are: 

I. RHF theory: 

V~n= AnA(n A + n  °)  - -½~  Aq.(q. + q  °) (21a) 
a 

A A 
1 2 ~< V~ °~= 5 Z  ~ (21b) - P ~ a ,  -.~ 0 

0 <  a" 

ion __ VAB - n ° AnB + n °AnA + AnA AnB (21c) 
A B 

coy _ _ _ p2 VAB-- ½VaB= 1 ~  abe<0 (21d) 
a b 
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II. UHF theory: 

1{ AnA(nA +nO)_  ~ [Aq~(q~ +(qO)~) + Aq~(q~ +(qO)~)] } (22a) V~ ~ = 
12 

A A 
V3 °~ = - ~ ~ [(P2d) 2 + (P~d) z] ~< 0 (22b) 

a < a" 

ViO, _ o AnB + n ° AnA + An A Ans (22c) A B  - -  n A  

A B 

V~t~/~ = - -  E E [( paab)2 "~ (Paflb) 21 ~ 0 ( 2 2 d )  
a b 

As shown in Appendix A the nonvanishing residual valence of Eq. (19) is due to 
the closed-shell idempotency relation of Eq. (10), which no longer applies in the 
generally open-shell SAL configurations. This is why ~(q0) vanishes exactly only 
for the closed-shell occupations qO e {0, 2}. We shall address this problem in 
more detail in the next section and in Appendix A, where we examine its relation 
to the normalization of the asymptotic SAL form of the condensed F-matrix, 
F~.  The nonvanishing ~(q0) indicates that the normalization of Foo has been 
affected by _N(q0), relative to that of Eq. (7a). However, one can easily correct 
the intraatomic valency indices of the RHF theory to account for the Foo-matrix 
renormalization. This is explicitly done in the next section, where the relations 
between total valency indices and the differences of the condensed matrix 
elements, A F = F - Fo~, are explored. 

The only contributions explicitly depending on the reference orbital occupa- 
tions are the intraatomic ionic valence indices: 

V~ ~ =- ½[AnA(nA + n °) + 2wA(q°)] (23) 
with wA(q °) denoting the reference dependent part given in Eq. (21a). In the 
RHF approach, where qO is limited to integral occupations, R(q °) counts the half 
occupied OAO's in the SAL, each orbit contributing - 1/4 (see Appendix A). To 
guarantee the rotational invariance of the results in polyatomic systems, statisti- 
cal (fractional) occupations in each atomic open shell have to be assumed within 
the RHF reference occupations, or they have to be linked to the molecular OAO 
occupations. In such cases the expression for ~(q0) becomes more complicated 
(Appendix A). 

Finally it should be observed that all ionic valence numbers of the present 
development result from the first terms in F(#, ~) expressions in Eqs. (5) and the 
diagonal part of the remaining terms. All these contributions can be classified as 
"Coulomb" terms, while the remaining terms, giving rise to the covalent valence 
indices, have "exchange" character [16]. 

3 General discussion 

Consider now the asymptotic atomic form of the one-particle density matrix. In 
the UHF scheme the P~ and PP matrices become diagonal: 

(P~v)oo=(q°)~6u~ and ( P ~ ) ~ =  o (q~) 6~ (24) 
The respective condensed F-matrix elements (Eq. (8)): 

F ( A ' A ) = I {  nz -~[ (P:a ' )2+(P 'a ' )2]a  a. } (25a) 

1 - ~ [(P~b) 2 + (P~b) 2] (25b) F(A, B) = 5 nAnB 
a b 
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then assume the following asymptotic values: 

r~(A ]A) =½ (n°) 2 [(qO)~12 + [(qO)~12) (26a) 
a 

Foo(A I B ) = n ° n  ° (26b) 

with (see Appendix A): 

Tr F = Tr 17~ = ~(qO) = 0 

Now, taking the differences with respect to the SAL values gives: 

AF(A I A) =- r (A  I A) - r ~ ( A  [A) = V] = V~ °v + V~ n (27) 

Ar(A I B) - r (A  [B) - F~(A [ B) = VtA~ = V]~ + V'~] (28) 

thus relating total electron pair valence numbers to the respective differences in 
the condensed F-matrix elements. 

The same general result follows within the RHF theory when one formally 
assumes dissociation into closed-shell fragments. However, the theory is not useful 
in cases of open-shall dissociation, 

The contributions in ionic valence numbers have qualitative electro- 
static associations. Consider, for example, the RHF V~" index which can be 
rearranged in the form: 

A 
1 1 V~ n = ~ • Aqa [(hA + n °) ~ (qa + qO)] (29) 

a 

Therefore, each removal of electrons from an orbital in A, relative to the reference 
occupation, contributes to the negative intraatomic ionic valence, while any 
addition of electrons to orbitals in A generates the positive contribution. This is 
in accord with the expected associated changes in the atomic energy per electron 
since, for instance, when electrons are partly removed from A the remaining 
electrons on the atom will be more strongly attracted by the less screened nucleus. 

Let us now similarly examine the qualitative trends in the interatomic ionic 
valency index, ion VAB. The first two terms in Eq. (21c) represent the pairing 
contribution between electrons on one atom A with the effective charge on another 
atom B. Such terms are associated with the bonding electrostatic interaction 
energy when AnB < 0 and antibonding interaction energy when AnB > 0. The last 
term, proportional to changes in electronic populations on both atoms, will have 
also the negative sign (bonding electrostatic interaction) where there is a charge 
transfer between the atoms. 

As our discussion of the total valency normalization clearly shows, the ionic 
and covalent indices are mutually connected. The additional valence "degrees of 
freedom" offered by the present scheme should reveal, be it in a very general 
"electron pairing" way, the conjugate effects associated with the bond formation, 
e.g., the competition effects between bond ionicity and covalency or between 
interatomic and intraatomic valence contributions. 

There are several general relations between the bond valency indices. Con- 
sider, for example, the RHF indices. A straightforward rearrangement of the 
relevant definitions shows that the difference (see Eq. (23)): 

V~O~er _ V~o~o = ~ (q o) _ y~ WA (q o)  
A 

= - 5  n +  qu 
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is reference independent. Yet another relation shows that the total interatomic 
ionic valency is the negative sum of all global (orbital reference independent) 
parts of the atomic ionic valencies (see Eq. (23)): 

vion -1- l inter - -  2 Z Ana( n° + hA)  = 0 ( 3 1 )  
A 

We therefore see that the two parts exactly neutralize each other in the global 
valency normalization. Clearly, since Eq. (7a) is linearly dependent on the P 
idempotency relations and the normalization of its trace (Eq. (10)), when adding 
all diatomic covalent contributions one recovers the overall Wiberg [17] relation 
(sum of the second equations in Eq. (10)): 

A 
coy 1 

4Vinter = 4 2 2 qa(qa --  2) ( 3 2 )  
A a 

It has been demonstrated previously [6] that the small atomic covalent contribu- 
tions can be absorbed in other terms, when one uses the local natural hybrid 
orbitals (NHO's) on atoms, which diagonalize the atomic blocks of the density 
matrix P. In such a representation V~ °v = 0 for all atoms. 

4 An illustrative model 

Consider a single, fully occupied MO, in the RHF approximation: 

= (a + xb)/(1 + x2) m (33) 

consisting of two OAO's 2 a = a and 2b -- b on atoms A and B, respectively, with 
the positive parameter ~c = 1 marking a symmetrical bond combination. The 
corresponding orbital part go, of the two-electron wavefunction, 7'(1, 2): 

1 
go( l ,  2) - (1 + x2~ {a(1)a(2) + ~2b(1)b(2) + x[a(1)b(2) + a(2)b(1)]} (34) 

consists of two ionic valence structures, where two electrons are described by the 
same OAO and two covalent structures, when electrons are assigned to OAO's 
on different atoms. The relevant elements F(/~, v) of the condensed F-matrix are 
immediately obtained from the familiar superposition principle: 

F(a, a) = (1 + ~c2) -2 = p2aa/4 (35) 

r(b, b) = ~4(1 + ~2)-2 = p~b/4 (36) 
2 

r(a,  b) + r(b, a) = r ( A  I B) = 2~2(1 + ~2)-2 = P2 b (37) 

where P,b are the RHF density matrix elements. In such a single MO approxima- 
tion only one element in (2 x 2) P matrix is independent, e.g., 

Pbb = 2 - -  P:a 

Pab = (PaaPbb)1/2 (38) 

Under assumption of ionic ( A - +  B%) dissociation, the asymptotic properties 
for a nonsymmetric bond combination for x < 1 are: 

~ko,~a, n ° =2 ,  n ° = 0 ,  i.e., ~o, oo(1,2)=a(1)a(2) (39) 
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Such a dissociation preserves the closed-shell character of 7/0(1, 2) at the SAL, 
so that the residual valence vanishes. The SAL values of F(#, v): 

r ~  (a, a) = 1, F~ (a, b) = coo (b, a) = F oo (b, b) = 0 

allow one to determine the corresponding valence indices from Eqs. (35)-(37) 
(notice, that in the model V 3  °~ = V $  °~ = 0): 

v i ~ n = - - t C 2 ( 2 - ' } - ~ 2 ) / ( l  q'-t¢ 2) = P2aa 1 < 0  (40)  
4 

= ~Pbb > 0 (41)  

= VaB + VAB + V A s  ~ . . . . .  = 2~2/( 1 x 2) 2 > 0 (42) 

where 

and hence 

c o y  1 = - -2t¢2/(1  -I- tO2) 2 V a ~  = - ~Pab  = = - VAB < 0 (43) 

i on  c o y  
V A B  = - 2 V A s  > 0 (44) 

One similarly determines the corresponding expressions for the (A + + B - )  
closed-shell SAL, natural for x > 1. The relevant valency diagram, with contri- 
butions plotted as a function of Pa,, is shown in Fig. la with the solid lines in 
the left x < 1 part showing the trends of the (A-  + B +) quantities and the solid 
lines in the right x > 1 part corresponding to the (A-- + B-)  quantities. These 
valency quantities are continued into the other part of the diagram as broken 
lines. 

The symmetric x = 1 case, e.g. H>  calls for the UHF description, which 
correctly represents the SAL(A + B). We would like to remark that for such 
molecules as H2 or LiH the only stationary energy solution at the equilibrium 

3(< 1 3(>1 

\ AB } , / /  , 
, .,/ 

ion x ~ ion 

o 

0 

(empty } 0 

O(empty) ([one pair} 19 b_ Pbb 

% 

2{Ione pair) 
I 

a 

0- 

-0.5- 

-1 
Pa°-= 

0.5" 

~ ~<1 ~>1 

.... 5 ~  I--~- <2. ... 

i i  AB k\ J 
/v'i°n i \ / 
, ~B i \d 

I i 
2(Ionel pair) 11 (empty)Or P~bbb 
O(empty) 1 (lone pair)2 

% 

Fig. la,b. The electron pair valence diagrams for the 2 0 A O  model: a ( A -  + B+)-SAL (x < 1, solid 
lines) and (A + + B-)-SAL (x > 1), solid lines) b (A + B)-SAL. In part a the solid lines of one half 
of the diagram (which defines the reference), and continued as broken lines into the other half of the 
diagram 
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interatomic distance corresponds 
MO's are identical. For H2: 

,-(i 
r (a ,  a) = F(b, 

and in the SAL (A + B): 

r ~ ( a ,  a ) = r ~  

to the RHF solution, so that both ~u~ and 7 ~a 

1) p~,=pt~ 1 , = ~ P  

b) = 1/4, r(A I B) = 1/2 
(45a) 

° ° 0) 

(b, b) = 0, r ~  (A I B) = 1 
(45b) 

H2 achieves maximum covalency at infinite separation, where the wavefunction 
is totally covalent. Since again the intraatomic valence contributions vanish in 
the model and by symmetry dnA = An~ = 0, so that V~] = 0, one obtains: 

V~" = V~" = 1/4 and V~°~ = - 1 / 2  (46) 

This means that the intraatomic ionic contributions are increasing and the 
covalent contribution is decreasing in the formation of the bond. In the MO 
picture the bond is 50% covalent and 50% ionic in the H 2 molecule. It should 
be observed that the magnitudes of these numbers exactly reflect the valence 
structure composition in Eq. (34) for ~ = 1. 

It is also of interest to consider the model valence numbers for the dissociation 
of the symmetrical bond, e.g. in Ha, into ionic (A-  + B-)  products: 

V ~ " = - 3 / 4 ,  V ~ " = l / 4 ,  V ~ ° ~ = - l / 2 ,  V ~ = I  (47) 

This means that the intraatomic ionic valence contribution decreases on atom A 
and increases on atom B. The interatomic covalent changes are invariant with 
respect to the reference and are the same as in the case of dissociation into H + H. 
The interatomic ionic contribution increases by transfer of one electron from atom 
A to atom B. Notice, that the signs of the atomic contributions are consistent with 
the equal distribution of electrons in a molecule, which for the assumed reference 
implies: An A < 0 and An8 > 0. The indices in Eq. (47)follow from both UHF and 
RHF descriptions. 

Let us finally discuss the UHF description of the interplay between various 
valence degrees of freedom of the model, when a nonsymmetrical (~c ¢ 1) bond 
in AB, say LiH, dissociates into atomic products. Again, when the only stationary 
energy solution corresponds to the RHF orbital, i.e., P~ --- PP = ~-P the relevant 2 
expressions for the charge transfer and the nonvanishing valence indices are: 

AnA = Paa -- 1 = (1 -- ~2)/(1 + t¢2) 2 = --AnB = --Pbb + 1 (48) 

ion ~ 1 VAB - - ( 1  - -  K2)2/(1  -~ K2) 2 = --'~(Paa --  Pbb) 2 ~ 0 (49) 

V ~ . = ( 1 + ~ c 2 ) - 2  1 2 -= "~Paa > 0 ( 5 0 )  

v ~ n  = K 4 / ( 1 . ~ _ K 2 ) 2  1 2 = "~Pbb > 0 (51) 
coy coy 1 2 

VAB = VAB = --  gPab < 0 (52) 

The corresponding diagram for the (A + B)-SAL is shown in Fig. lb. The 
general trends following from Eqs. (49)-(52) are indeed reflected by the 
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A - - B  

I " \ \  (A I B) / ~  

\ J / \ \ + / /  A~on(AIBI <0 
A ~cov(AIB} <0 

A l / I f  "" "" "~" '~'" 

I 
/ / I / I  A--~B 

A~on(AlB) >0 

A~covlAla) <0 

Fig. 2. Qualitative condensed two-electron 
probability diagrams for diatomic molecules 
exhibiting a covalent ( A -  B) and a 
donor-acceptor (coordination) (A ~ B) bonds, 
respecitvely 

corresponding SINDO1 [15] results for LiH (0 < x < 1) (see Table 1 below): 

V~" = 0.412, V ~  = 0.180, V~" = 0, 

L Li - -  0.052, i . . . . .  co,, = VLiH = -- 0.081, VuH = -- 0.460 

As a final qualitative result we would like to mention the valence indices for H + 
relative to the (A + B+)-limit: 

V~ °v = V~ °" = V~" = V~" = O, VABi . . . . .  = _ VA8 = 1/4 

AS we have already pointed out earlier the sum of all valency contributions for 
a given atom, or for a pair of atoms, respectively, reflect upon the changes 
(relative to the SAL reference) in the condensed two-electron probabilities. It 
follows from Eqs. (49)-(52)  (Fig. lb) that in the case of dissociation into atoms, 
when the bond can be classified as truly covalent (as opposed to the donor- 
acceptor bond, associated with the dissociation into ions) A-B:  

A ~ ( A  I A ) > 0 ,  A ~ ( A  I B) < O, APio,(A J B) < O, A~co'(A I B) < O (53) 

where, in diatomic part: 

AC~o,(A J B) io, = V a B / X  (53a) 

A~co'(A I B) = V~A°~/o/¢" (53b) 

This is qualitatively shown in the upper two-electron probability diagram shown 
in Fig. 2. A different (lower) diagram results when the bond has a bond-acceptor 
(coordination) character A ~ B. In such a case (see Eqs. (40)-(44)  and Fig. la): 

A ~ ( A  [A) < 0, A ~ ( B  J B) > 0, A ~ ( A  [B) > 0, 
(54) 

A~eo,(A ]B) > 0, A~cov(A I B) < 0 

Such probability diagrams provide therefore additional bond characteristics, 
reflecting the "origin" of the electronic pair shared in the bond. One could expect 
that the present valency indices should provide new classification schemes of 
various bonding situations in molecular systems. 
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5 Numerical results and discussion 

In this section we shall summarize the illustrative numerical results obtained for 
a selection of diatomic and polyatomic molecules, generated for various alterna- 
tive reference occupations in the RHF version. All these results correspond to 
the dissociation of a molecule into atoms. The relevant density matrices have 
been obtained from the SINDO1 [18] SCF MO calculations. 

5.1 Description of  the reference orbital occupations 

In order to examine how strongly the assumed reference orbital occupations 
affect the atomic valence numbers within the RHF scheme several reference 
configurations have been selected. The first choice involved the standard integral 
occupations, with the 2s12p 3 configuration being assumed for the carbon atom 
and the OAO density matrix P 

Reference I: 

q°={nlA } and P (55) 

where ntA is the occupation number of shell I of atom A. For carbon it holds that 
qO = { 1, 3}. To assure the necessary invariance properties it would be desirable 
to link the orbital occupations to molecular density matrix P, via an appropriate 
qO = qO(p) relation. The simplest choice, and this is the second reference used in 
the present RHF study, is a simple scaling of all diagonal elements q~ corre- 
sponding to an atom A, i.e. qA by a common scaling factor, ~a = n °/nA. 

Reference H: 

q0A =qA(A and P (56) 

Such a procedure preserves proportions between OAO occupations in their 
molecular valence state and provides realistic approximations to orbital occupa- 
tions of atoms in the polarized (promoted) state (before charge transfer). The 
additional rationale for such a procedure is our goal of removing from the 
valency quantities all terms exclusively reflecting the intraatomic charge re- 
arrangements, associated with exciting (promoting) the constituent atoms to 
their hypothetical polarized states. The associated "promotion energy", while 
affecting the relevant activation energy of the bond formation reaction, should 
have little effect on the reaction energy, i.e. the bond strength of which the 
valency is a supplementary, "electron pairing" characteristics. 

Yet another choice of the reference atomic occupations, which links them 
with the molecular orbital density matrix, is associated with the NHO's [ 10]: 

~A = 2~ W~ (57) 

which diagonalize the atomic blocks PAA of P: 

P'A = OAP aA UA, (PtA)rs = P A,r(~rs (58) 
p '  where { A,r} groups the NHO occupation in A. This local hybridization of 

coy ion (and their diatomic contributions), and OAO's influences neither Vi.,er n o r  Vin te  r 
it totally absorbs (Vin,r.) (V~ °v) . . . .  0 into the ion co~ = = (V~.t~a) term, again with only 
its first term, w(q°), being affected. We would like to observe, however, that the 
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N H O occupations have to be scaled back to the initial atomic electron popula- 
tions in order to reflect orbital occupations before charge transfer. 

Reference III: 

qO = p ~ A  and P (59) 

Obviously, the choice of the reference AO occupations does not have to be 
linked to the representation of the density matrix. Therefore, a possible scheme 
IV of determining valence indices may involve the N H O  density matrix, P ' ,  and 
the reference atom occupations with statistical distribution of electrons in each 
open shell in the SAL. 

Reference 1V: 

q°={n°A/rn ,}  and P (60) 

where nO denotes the number of electrons of shell l of  A in the SAL, and rn t 
stands for the orbital degeneracy of shell l. 

In the U H F  calculations the ground state configurations in the SAL have 
been assumed. 

The R HF  atomic valence numbers for selected diatomics and polyatomics 
are compared in Table 1. The corresponding U H F  atomic data are collected in 
Table 2. In Table 2 we have also collected the relevant diatomic indices, common 
to both HF schemes. The reported RHF data have been obtained from Eqs. 
(21), so that they exhibit the residual valence whenever the open shells are 
involved in the SAL. 

5.2 Model predictions 

It follows from Fig. la that the extreme, separated ions [ A - +  B+(Paa =2,  
~c = 0) and A ÷ + B (Pbb = 2, X = oe)] valency indices are consistent with intu- 
itive predictions: zero covalency, zero diatomic ionic valency, maximum ionic 
valency of the anion, and vanishing ionic component of the cation. The signs of 
ionic contributions do indeed reflect the changes in the atomic electronic 
populations relative to the respective reference state. Namely, in the left part 
(0 < ~c < 1) atom A is donating electrons to B (V~ n < 0 and V~ n > 0), while the 
opposite is the case in the right part of the diagram (x > 1). The positive values 
of io, VA~ are due to the assumed asymmetry in the reference electron distribution; 
e.g., for ~ = 1, one of the electrostatic terms vanishes since one atom exhibits a 
zero reference population and the remaining positive electrostatic contribution is 
twice the magnitude of the negative An~ An~ term. The shift of the diatomic ionic 
index in Fig. lb, by - 2  relative to Fig. la diagram, is due to the assumed 
symmetric distribution of electrons. Now, for V ~  vanishes exactly (~c = 1) and 
assumes the maximum value for the lone pair structures, say Paa = 2, with the 
contributions: AnAn° = + 1, AnBn°A = -- 1 and AnA An~ = -- 1. 

Both diagrams demonstrate a balance between various ionic and covalent 
valency parts in a model. In Fig. lb the maximum covalency is reached when the 
atomic valencies are lowered (raised) to a quarter of the lone pair value, and 
when diatomic ionic valency vanishes. The reported earlier values for LiH with 
a very low magnitude of ion VI~L~ indicate that this molecule should be placed in the 
general region 0 < x < 1 of the diagram. Here x is closer to one than to zero. 
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Fig. 3a,K Quantitative condensed two-electron probability diagram for selected diatomics from the 
SINDO1 SCF MO calculations: a non-isoelectronic systems; b isoelectronic systems. In part b both 
total (solid line) and covalent (broken line) probability changes are shown 

Again, the lone pair situation corresponds to the zero covalency and the 
maximum ionic contribution of the anion, vanishing ionicity of cation, and the 
maximum magnitude of the charge transfer (diatomic) ionicity. This is an 
explicit demonstration of the expected charge transfer lowering of the system 
covalent component of valency. Yet another demonstration of the competition 
between the covalent and ionic bond components is provided by the ionic 
covalent partitioning of the condensed probability diagram in Fig. 3b, where 
isoelectronic molecules with gradually increasing bond ionicity are considered 
(see the discussion in the following section). 

5.3 Probability diagrams 

All probability plots of Fig. 3 have a general A - B  character of the upper qualitative 
diagram in Fig. 2. However, with increase of .At, the probability changes diminish 
very strongly. Therefore, one should rather use the valence numbers, instead of 
the condensed probabilities themselves, as measures of the changes in the 
two-electron probability distribution in the molecule. One observes in the HF 
approximation the net decrease of simultaneously finding one electron on A and 
the other on B and an increase in probability of finding two electrons simultaneously 
on one atom, relative to the separated atom values. For strongly ionic bonds, e.g., 
in HF and LiF, one observes an increase in probability on the more electronegative 
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atom, and practically the opposite change in the diatomic probability value, with 
the more electropositive atom exhibiting almost zero shift in its probability value. 

Figure 3b, where we have compared total and covalent condensed probabil- 
ity changes in a series of four isoelectronic molecules, offers additional insight 
into the covalent versus ionic competition in chemical bonding. The series starts 
with a pure covalent bonding of a homonuclear diatomic C2, followed by 
heteronuclear diatomics with a gradually increasing bond ionicity. In a homonu- 
clear case (the same observation applies to H2 and N2 of Fig. 3a) the 

ion AN(A I A) > 0 is solely due to the ionic contribution A:~io,,(A I A) = V~ / X ,  
since ANco~(A I A) = VC~ °'/JV" = 0, while the A~(A [ B) < 0 is exactly due to the 
covalent contribution (53b). With increasing bond ionicity one observes a 
nonsymmetrical probability diagram with the two-electron probability transfer 
being observed from the N(A I B) component to the more electronegative atom 
N(A IA) part. The magnitude of these changes increases with the increasing 
amount of charge transfer, determined by the relevant electronegativity differ- 
ence. The increasing bond ionicity is also manifested by the decreasing covalent 
contribution in the N(A I B) lowering. In the most ionic LiF case it is strongly 
dominated by the ionic component, which was totally absent in the homonuclear 
case. The changes in the A~(A I B) contribution parallel the expected changes in 
the relative contributions of covalent VB structures in the ground-state wave- 
function. With increasing bond ionicity the covalent contributions diminish with 
a simultaneous increase in the participation of the ionic structures of the more 
electronegative atom (A), and the associate decrease in the presence of the ionic 
structures associated with a less electronegative atom (B). Since: 

A~io n = (nan~ -- n°an° )/JV 

measures the change in the classical (global) pairing number of electrons on 
constituent atoms, while A~cov provides a similar measure of the change in the 
quantum-mechanical (orbital) electron pairing number, one concludes from Fig. 
3b that increased bonding ionicity diminishes the contribution of the latter 
electron pairing change, while increasing the contribution of the former. In a 
sense bonding becomes more classical when its ionic character increases. 

The general trends of the overall A~(AIB) quantities obtained from the 
present two-electron perspective, viz., diminishing of A~(A I B) and increasing 
A~(A I A), relative to the atomic dissociation limit, are somewhat surprising in 
view of familiar intuitions based upon the one-electron perspective, e.g. accumu- 
lation of electrons in the bonding region. This apparent contradiction can be 
explained by again considering the simple two atomic orbital model of Sect. 14. 
Namely, at the SAL the product wavefunction ~0,~(1, 2) = a(1)b(2) has exclu- 
sively covalent type contribution, which implies P~ (A ]B) = 1. When two atoms 
are forming the chemical bond, the relevant wavefunction (34) divides this 
probability into atomic ionic and covalent-type two-electron probabilities. This 
clearly shows that P(A ]B) has to decrease in the molecule indeed. 

5.4 Numerical results 

We have used the semiempirical MO method SINDO1 [18] for the calculation of 
simple molecules to demonstrate the consequences of the valence analysis 
developed in the previous sections. These calculations are suitable since they give 
the correct ground state (e.g. BeO) and dipole moment directions (e.g. CO) for 
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Table 3. Valence differences A V = Vx - VB for RHF and UHF calculations 
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RHF UHF 

A B  n I II III  I V  

H 2 0.00 0.00 0.00 0.00 0.00 

H L i  0.38 0.38 0.28 0.28 0.29 

H F  - 1.41 - 1.34 - 1.33 - 1.24 - 1.41 

C 2 . . . .  0.00 

B N  . . . . .  1.79 

BeO . . . . .  3.07 

L i F  - -3 .86  - -3 .87  - -3 .82  - 3 . 7 0  - 3 . 8 6  

C O  - 1.60 - 1.60 - 1,04 - 1.09 - 0 . 9 9  

N 2 0.00 0.00 0.00 0.00 0.00 

CO2 - 4 . 3 1  - 4 . 0 7  - 4 . 1 2  - 3 . 8 0  - 3 . 8 0  

O L i  2 3.65 3.71 3.69 3.61 4.01 

N L i  3 3.04 3.04 3.01 3.04 3.54 

all systems considered. We present in Table 1 atomic valence numbers VA and 
residual valences N together with the atomic electron populations n A. 

The residual valence ~ is a measure of  pairing. It  is an indication of the 
magnitude of open-shell character in the tomic reference frame. Reference I 
shows that - 2 N  is the number of  bonds that are broken in the unpairing of  
electron in the atomic reference. This number is 1 for H2, HLi, HF,  LiF, 2 for 
OLi 2, 3 for CO, N2, NLi3, and 4 for CO2. The results for valence numbers VA 
and V~ are very similar in all four reference frames. The negative values indicate 
usually electron donating atoms, the positive values electron accepting atoms. 
The values of  VA and V~ are subject to variations in N and have no absolute 
meaning. 

In Table 2 both atomic and diatomic contributions to U H F  valence are listed 
in the ionic and covalent partitioning scheme advanced in the previous sections. 
The U H F  MO's  are the same as the R H F  MO's,  i.e. pure singlets, not spin 
contaminated. This means that the R H F  solutions are interpreted. 

As already shown in Fig. 3a and 3b the isoelectronic series C2, BN, BeO and 
LiF shows a competition between interatomic ionic and interatomic covalent 
valence contributions. A decrease in the bond covalence corresponds to an 
increase in the bond ionicity. Negative interatomic valence numbers V]'~ are an 
indication of bonding, so are positive valence numbers ion VA~. These diatomic 
contributions are independent of  the atomic reference and are therefore the same 
for R H F  and UHF.  

Finally we have listed the differences A V - - V A -  VB of atomic valence 
numbers in Table 3. These differences are fairly insensitive with respect to a change 
of reference. For  the isoelectronic series C2, BN, BeO, LiF they reflect an increase 
in bond ionicity when going from C2 to LiF. Again the values should not be 
considered as relevant in an absolute sense. 
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Appendix A: Residual valence and the F~ normalization 

As shown in Eq. (31) the nonvanishing residual valence of the RHF valence 
numbers is due to the open-shell structure of the SAL and is related to the shift 
of the Foo normalization from that of F, i.e., Y = n(n - 1)/2: 

N(qO) = y _ Tr F~ (A1) 

In order to examine the normalization of the asymptotic F-matrix in more detail 
we partition the asymptotic density matrix Po~, into the closed-shell Pcs, and 
open-shell Pos parts: 

P~ = Pcs + Pos (A2a) 

Pc~ = 2(2 I/3c~ 12) (A2b) 

Pos = ~ q° <,~ I/~. [,~ >-  ~ qOe. (A2c) 

where /3c, is the projection operator onto the subspace of doubly occupied 
OAO's and {P, } are the projectors associated with each OAO partially occupied 
by qO electrons in the SAL. From Eqs. (A2) one immediately obtains: 

o ,  

T r P  L = 2 Tr P~, + E q  ° T r P ,  
,u 

o ,  

= 2n. + • (qO)2 (A3) 
# 

where ncs-= n -  no, is the overall number of electrons in the doubly occupied 
_ _  o s  0 OAO's of the SAL, and no~ - ~ q~. Hence (see Eq. (5a)): 

o s  

1 2-1(n  n o ~ ) - l L t q u  TrF  =5 n _ ~ .  0 ) 2  

# 

o s  

=Jf f  + ¼ ~ ( 2  o o - q ~ , ) q ~ ,  (A4) 
# 

which immediately leads, via Eq. (A1), to the RHF residual valency value of Eq. 
(19). 

For the integral OAO occupied in the SAL (reference I): 

~(qO) = -n~ /4  (A5) 

where n~ is the number of singly occupied OAO's. When the statistical distribution 
of electrons in the open atomic shells is considered (reference IV): 

o s  

~(qO) = ¼ ~ (qO _ 2)nz (A6) 
l 

where nt is the total number of electrons in the open atomic shell l, and qO = nt/mt, 
where mt is the shell orbital degeneracy. 

The nonvanishing residual valence in the RHF scheme results since the 
closed-shell idempotency relation (6) no longer applies in the SAL. In the UHF 
case the open-shell relations (6) apply both in a molecule and in the SAL, thus 
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preserving the F-matrix normalization and giving rise to the vanishing N(q0). 
Namely, it follows from Eqs. (26) that: 

Tr Foo= 1 {n 2 -  ~A ~ ([(qO)~]2 + [(qO)~]2)} 

=½ n~-~[(q°~y+(q°~)~] = d / ' = T r r  (17) 

since the reference occupations q0~ {0, 1}. 
If we rewrite Eq. (A1) as Ar = T r F ~ + N ( q ° ) ,  we consider this as a 

partitioning of ~Ar in an atomic reference part and a residual molecular contribu- 
tion. The same result can be obtained more systematically by a second order 
Taylor expansion of Tr F. This is demonstrated in Appendix B. 

Appendix B: Taylor expansion 

In this Appendix we demonstrate that the respective electron pair valence indices 
measure the sum of the first- and second-order changes, in the Taylor expansion 
sense (around the SAL reference), of the associated generating functions, which 
appear in the F-matrix normalization equation. For example, in the UHF 
scheme: 

Tr F = ~ [4)A(nA, qa) + f2~ (P~)] + ~ ~, [~Ae(nA, n s )  + f2Ae(PA~)] 
A 

where • and f2 stand 
explicit forms are: 

(B1) 
a ~  B 

for the ionic and covalent generating functions; their 

{A } ~A = 1 n~ - ~ [(q~)2 + (q~)2] 

t~)AB ~ HAH B 

OA = V~A °~ 
c O Y  f2A~ = V AB 

Here P3 groups all off-diagonal elements of PA. 
At the SAL reference state the following 

(B2) 

(B3) 

(B4) 

(~5) 

equations hold: (nA)oo = n °, 
(qA)~ = qO, (p~)~ = 0 and (PAB)~ = 0. Therefore the changes in the off-diagonal 
elements of the density matrix P, relative to the SAL values are AP'~ = P'A and 
A P ~  = PA, .  It can be easily verified that the electron-pair valency numbers are 
the sums of the first- and second-order changes of the relevant generating 
functions in the following Taylor expansions: 

A ~A 
co + a  \ 0qa / ~  
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a <  ° ,  APaa" + ~ \~p2aa, jo~ Ap2aa , = VY  v (B8) 

AQA.=_~r(O~A.'~ 1 (ct 2"-QAB~ ] 
It should be observed that the first-order term of each covalent term expansion 
vanishes due to the assumed form of the density matrix in the SAL. 

This Taylor expansion interpretation clearly demonstrates that the valence 
numbers in fact measure the changes of the generating pairing functions relative 
to the reference SAL values. Notice, that the covalent valence quantities are 
themselves the generating functions, thus exhibiting a special invariance prop- 
erty. The above analysis also emphasizes the difference character of the valence 
numbers, in accordance with intuitive classification of the valency itself as being 
an electron pairing difference phenomenon. 
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